ガウス分布関数
一次元
(1)\[\mathcal{N}(x|\mu, \sigma^2)
= \frac{1}{\sqrt{2\pi\sigma^2}}
\exp{\left( -\frac{(x-\mu)^2}{2\sigma^2} \right)}\]
N次元
(2)\[\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})
=
\frac{1}{\sqrt{(2\pi)^N\left|\boldsymbol{\Sigma}\right|}}
\exp{\left(
-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top
\boldsymbol{\Sigma}^{-1}
(\boldsymbol{x}-\boldsymbol{\mu})
\right)}\]